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An ab initio Hartree-Fock gradient program is described. It is characterized by 
(1) efficiency of the gradient evaluation, and (2) capability of handling higher 
angular momentum (d and f )  basis functions. The latter are constructed from 
shifted Cartesian Gaussian p-type primitives. A satisfactory solution is pre- 
sented for the problems connected with the neglect of small integrals in a 
gradient program. Methods for increasing the efficiency of the SCF procedure 
are discussed. 
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1. Introduction 

Analytic calculation of the energy gradient, i.e. the forces acting on the atoms, can 
significantly facilitate the determination of molecular geometries and potential 
constants by quantum chemical methods [1, 2]. The first such program in existence 
was MOLPRO [3] ; a significant amount of work has been performed by it [-4-6]. 
However, it was conceived to treat small and symmetrical molecules, and its 
efficiency proved insufficient for systematic calculations on larger molecules. This 
was due mainly to the fact that integrals in MOLPRO were not labelled and 
therefore it was not possible to neglect small integrals in a simple way. Recently, 
three other ab initio gradient programs have been reported: two adaptations of the 
GAUSSIAN 70 program system [7, 8] and a program based on POLYATOM [9]. 
As to the latter, published timing data show that its efficiency is not yet satisfactory. 
This objection is probably not true for the other two programs. However, a serious 
limitation of all these programs, except MOLPRO, is their inability to handle higher 
angular momentum (d and f )  basis functions. 

In view of the above facts, it was decided to write a new ab initio SCF gradient 
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program, utilizing the accumulated experience. The two main features of the 
program are :  the efficiency of  the gradient calculation, and the ability to handle 
higher angular momentum functions. The requirements for a gradient program 
differ from that of  an ordinary SCF program, and the techniques used in the new 
program, called TEXAS, are discussed here. In addition to its main parts: integral 
evaluation, SCF iteration and gradient calculation, TEXAS includes options to 
transform the forces to internal coordinates [ 1] and to generate distorted molecular 
geometries, in addition to a number of  expectation values. These features, and 
problems pertaining to systematic geometry and force constant calculations, will be 
discussed in a forthcoming paper [10]. 

2. Basis Functions 

All existing Gaussian integral programs use either Gaussian lobes or Cartesian 
Gaussians. The former have the advantage that the integral derivatives, necessary 
for gradient evaluation, can be easily programmed. However, a lobe program 
cannot be made as efficient as a program using Cartesian Gaussians because the 
shell concept, introduced by Pople and coworkers [ 11 ], cannot be utilized. Another 
disadvantage of the lobe basis set is the decrease in numerical accuracy for integrals 
involving d and f functions. Ahlrichs [12] has discussed the relative merits of  
Gaussian lobe versus Cartesian basis sets and the construction of  an efficient 
Gaussian lobe program. His code is perhaps the ultimate in Gaussian lobe 
programs. Nevertheless, it is still not efficient enough for the present purpose, 
particularly in non-planar molecules where local symmetries in the lobe con- 
struction cannot be used. 

In this connection, one may mention the recent suggestion [13, 14] that four 
Gaussian lobes, arranged at the corners of  a tetrahedron, be used instead of the 
customary Gaussian lobe basis set which requires seven lobes for an sp 3 shell. Such a 
feature is available in MOLPRO but we abandoned it because of problems with d- 
contamination of the sp basis. This manifests itself in a gradient program by non- 
vanishing net torque of the forces. For  a fuller discussion, see [15]. 

When choosing the basis set, it must be taken into account that the time-consuming 
part of the gradient evaluation closely resembles integral calculation. However, 
because of the added complexity, it takes usually 3 to 5 times as much CPU time as 
the integrals. Therefore, the integral section of the program gains importance in 
comparison with ordinary SCF programs. This speaks for Cartesian Gaussians 
which permit faster integral evaluation. A disadvantage of  Cartesian Gaussians is 
that calculation of  the necessary integral derivatives over d and f functions is very 
involved. 

As an alternative to both lobes and Cartesian Gaussians, the following approach 
was chosen: only s and p Gaussian primitives are allowed. These are grouped, 
whenever possible, in shells which may be arbitrary combinations of s, Px, Pr and p,  
functions. The shells most often used are of the type S, X Y Z  and S X Y Z ,  the latter 
denoting an s and three p functions with equal orbital exponents. Higher angular 
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momentum functions are constructed fromp-type primitives, in a similar spirit as p 
and d functions are constructed from lobes. The details of this construction are 
given in Table 1. This approach preserves the simplicity of an sp integral program, 
with efficient subroutines for the relatively few types of integrals encountered, and 
at the same time allows the use of higher angular momentum functions. If the 
recommendation in Table 1 is followed, contamination by higher spherical 
harmonics (in the first place contamination of the d's by g functions) is negligible, as 
shown by the very low net torque in calculations employing d functions. For an sp 
basis set, the net torque must, of course, vanish exactly. 

As in the case of  Cartesian Gaussians, the diagonal d functions of Table 1 contain a 
significant s-type contribution (note, however, that this contribution is not identical 
in the two cases: our d functions correspond closely to the Hermitte-Gaussian 
functions [16]). If the basis set is not saturated with respect to s functions, it is 
necessary to employ six d functions instead of five, to prevent the coupling of s and d 
functions which might bias the population of the d's. When using Cartesian 
Gaussians, the angular parts of  the d functions are usually chosen as x 2, y2, z 2, xy ,  
xz,  yz .  In our case, the special 3s combination given in Table 1 can be substituted for 
one of the diagonal d functions, say dz2, leading to increased computational 
efficiency. We have found no way to eliminate the sixth d function completely, 
unless the basis is sufficiently saturated with respect to s functions. 

Table 1. Construction of higher angular momentum functions from s andp type Cartesian Gaussians 

Type Function form a Shells Exponent coefficient b 3 c n N d 

3d 2t /x2-1;  xy; xz  X Y Z  t 1 +1 +0.1x 6 2 

- 1  - O . l x  

3d 2r/y 2 - 1 ; yz  Y Z  r 1 + 1 + O. ly  4 2 

- 1  -0 .1y  

3~ 2r/r 2 - 3  S 0.8517143r/ 0.83390 0 2 2 
l.lt/ --1 0 

4f f 5x2y - r2y ;  5 x ~ z - r 2 z  Y Z  1.0125722r/ + 1 +0.25x 6 3 

0.9874409t/ --1.93874 0 
1.0125722t/ + 1 -0 .25x  

4f  xyz  Z q +1 +0.25x, +0.25y 4 4 
-- 1 +0.25x, -0 .25y 
- 1 -0.25x,  +0.25y 
+ 1 -0.25x,  -0 .25y 

a The common factor exp ( -  t/r 2) has been omitted. 
b Coefficients refer to normalized primitives. 
c Magnitude and direction of the displacement of the shell center, expressed in units of  the inverse 

square root of the actual orbital exponent. 
d N is the number of shells, n the number of primitives used in the construction. 
e The function dz2, constructed analogously to d~,  may be used instead. 
f Construction of the functions y2x, yZz, and z2x, z2y is analogous, using shells XZ, displaced in the y 

direction, and YZ, displaced in the x direction, respectively. 
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The situation is somewhat different for f functions. When using Cartesian 
Gaussians, the usual procedure is to employ all ten possible cubic polynomials of 
x, y, z in the preexponential factor, to prevent the coupling of the f functions to p's. 
This procedure is expensive and can be avoided by using f functions which are 
orthogonal to allp functions. Theffunct ion set of Table 1 was constructed to insure 
this orthogonality to a high degree of accuracy. However, the orthogonality of t h e f  
functions to each other had to be abandoned; this does not influence the results but 
is a minor drawback for the interpretation of the wave function. Using the 
construction in Table 1, only seven f functions need be employed. 

A further advantage of the present basis set is that new expectation values can be 
easily programmed, in contrast to programs using higher Cartesian Gaussians. 

3. Integral and Gradient Calculation 

As in most modern integral programs, all integrals over four particular shells are 
calculated simultaneously. Following Dupuis et  aL [13], integrals over four shells 
are called a block of integrals. If  our method of constructing higher angular 
momentum functions is adopted then the primitive shells making up a contraction 
may have different centers. GAUSSIAN 70 [17] makes use of the fact that all 
primitives in a contraction have the same orbital center. In GAUSSIAN 70, first a 
small number (70 instead of 256 for four sp a shells) of integrals are constructed in a 
special coordinate system. These integrals can be summed over the contractions in 
one of the charge distributions, and then transformed back to the original 
coordinate system. The important point is that the transformation is outside the 
innermost loop, and is proportional only to the square (and not to the fourth power) 
of the number of primitives per contraction. This advantage was sacrificed in the 
current version of TEXAS, and consequently we may expect that for highly 
contracted functions it will be less efficient than GAUSSIAN 70. However, our 
experience, as well as that of Schlegel et aI. [7] shows that highly contracted basis 
sets, like the STO-3G set [-11] are not adequate for systematic force constant 
calculations. The use of such basis sets is particularly hard to justify if the gradient is 
to be calculated because their main computational advantage, fast SCF iteration, 
is much less important in this case. 

In order to speed up the integral and force calculation, quantities appearing in the 
integral formulas are precomputed as far as possible. The total number of these 
quantities may be very large; in order to keep the storage area limited and eliminate 
external storage, the algorithm shown in Table 2 is used. Using this algorithm, the 
core storage needed for integral evaluation is essentially independent of the size of  
the basis set. The incomplete gamma function is evaluated by the compact and fast 
rational approximation given by Spellucci and Pulay [18]. 

Integral blocks in the current version of TEXAS are calculated in the classical 
canonical order, wi th / running from 1 to N, J f rom 1 to I, Kfroml  to I and L from 1 
to min (J, K). The indices here refer to shells, not to basis functions. Following an 
idea by Meyer [19], Ahlrichs [12] uses a novel integral order, in which the indices 
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Table 2. Precomputing algorithm for two-electron integrals and their derivatives 

303 

DO 1 I = 1, NCSHELL (loop over contracted shells) 
J = l  

3: J B E G = J  
4: precompute all possible data for shell pair I, J; store the data in array PRELIM 

IF (PRELIM is full or J = I )  GO TO 5 ~ 
J = J + l  
GO TO 4 

5: JEND = J  
DO 2 K, L (loop over contracted shells K and L in lexicographic order; precompute everything for 
shell pair K, L) 
DO 3 JJ = JBEG, JEND 
calculate integrals or integral derivatives using precomputed data 

3: END LOOP JJ 
2: END LOOP K and L 

IF (J.EQ.I) GO TO 1 
J = J + l  
GO TO 3 

1: END LOOP I 

run as follows: I =  1 to N; J =  1 to I; K =  1 to J ;  L =  1 to K, and three integrals are 
computed simultaneously: (IJ I KL), (IK I JL) and (ILI JK). This can make the 
subsequent SCF iteration significantly (up to three times) more efficient in terms of 
CPU time, compared to the customary method where contributions from each 
integral to all Fock matrix elements are calculated independently. (Note that a third 
method, much inferior to those mentioned but used in some programs, is to generate 
the integrals in the canonical order and then transform the integral list to the 
Roothaan supermatrices.) Ahlrichs [ 121 transforms the original integral list to the P 
supermatrix, defined as 

P~ZKL = [4(IJ I KL)-(IK[ JL) - ( ILI  JK)](1 --0.56U, XL) (1) 

This transformation has the unfortunate property that it interferes with the neglect 
of small integrals, as the probability that an element of the P supermatrix is smaller 
than a given threshold is much less than the probability that an integral is less than 
it. For  larger molecules, the file containing the P supermatrix may significantly 
exceed the size of the integral file. This is a decided disadvantage of the Ahlrichs 
program. A preferable procedure, at least for large molecules, is to calculate the 
integrals in the Meyer-Ahlrichs order in triplets, but perform the transformation (1) 
in each SCF iteration immediately preceding the processing of the integrals. 
Although this procedure consumes a little CPU time, it is more than made up by the 
decrease in I/O time. 

As mentioned above, the current version of TEXAS does not use the Meyer-  
Ahlrichs integral order, for two reasons: it interferes with the precalculation 
routine, and it is not particularly helpful in the gradient calculation. However, it was 
found that SCF time often dominates total calculation times, particularly for 
smaller basis sets. Presently there is a modification under way which would allow the 



304 P. Pulay 

use of this alternative integral order. In accordance with the shell principle, triplets 
of blocks are calculated rather than triplets of individual integrals. 

The precomputation algorithm, as well as the utilization of symmetry and the 
neglect of small integrals result in a scrambled integral list. This means that integrals 
must be labelled. Unlike most other programs which label the integrals individually, 
only whole blocks are labelled in TEXAS. This shortens the integral file to nearly a 
half. This feature is considered important, as the length of the integral file and the 
associated input--output time may be limiting factors in large-scale calculations. 

The problem of labelling is closely connected with the neglect of small integrals. A 
two-electron integral over four primitive Gaussians has the form 

.Ia(1)b(1)r~ c(2)d(2) d~l dz2 = Sab x S~ • F (2) (ab[cd) 

where Sab is the overlap integral between the ls-type counterparts of a and b. The 
magnitude of the integral is mainly determined by the product Sab • Sod, as F is a 
relatively weak function of orbital exponents, positions and types. Block labelling 
means that the neglect criterion must be based on the type-independent factor, i.e. 
on Sab x Sea. This choice has the important advantage of making the total energy 
strictly invariant with respect to the rotation of the Cartesian axes, in contrast to 
neglect criteria based on the magnitude of individual integrals. Using this 
procedure, it is not possible to set an upper limit on the magnitude of the neglected 
integrals, as Fhas  no upper limit: for coincident functions with equal exponents, it is 
proportional to the square root of the orbital exponent. At first this may seem a 
disadvantage. Closer inspection reveals, however, that an integral can significantly 
exceed the limit set for the overlap factors only if both charge distributions, ab and 
cd, have high orbital exponents. In this case, however, the corresponding diagonal 
Fock matrix elements must be large, and the influence of the neglected integral on 
the energy and other expectation values will be small. Indeed, the present neglect 
scheme seems more natural than a flat limit set on the integrals, without reference 
to the properties of the participating charge densities. 

Neglect of small integrals is very important in large molecules. It can, however, lead 
to discontinuities of the potential surface. These are very annoying in calculating 
energy derivatives, particularly higher ones. A method of suppressing such dis- 
continuities was suggested by Meyer and programmed in the " S "  version of 
MOLPRO [3]. An improved version thereof is used in TEXAS. The essence of this 
method is to replace the overlap factor S,b x Sod in the integral expression (2) by 
f(Sab x Sod) where the function f (x)  satisfies 

f ( x ) = x  if x~>~l 

f(x)=cp(x) if 51 ~ X ~ g  2 (3) 

f (x)  = 0 if x~<e2 

the function q~(x) being chosen in such a way that q)(el)=el, q~(e2)=0. Meyer 
originally suggested a simple linear function for ~p. This restores the continuity of 
the surface but not its smoothness, i.e. the continuity of the gradient. A cubic spline 
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function is used instead in TEXAS, with the additional constraints on the first 
derivative of ~o: 

(/)'(g 1) = 1 ~o'(e2) = 0  (4) 

This works very well. Default values are e l=10  -6, ~2=10 -7, the maximum 
deviation [f(x) - x[ being 292 = 2 x 10- 7. 

It is worth while to compare the present approach with the charge conserving 
integral approximation of Wilhite and Euwema [20]. In their method the overlap 
function Sab itself is approximated, in the simplest case by truncation. In contrast to 
the usual neglect scheme, this method is applicable to one-electron integrals, too. 
One hopes that this results in a more balanced integral approximation: in 
particular, there are no more excess nuclear attraction integrals which have their 
compensating electron-electron repulsion integrals deleted. 

Without claiming any priority, we may note that, following an idea of Meyer, this 
approach was implemented in the " S "  version of MOLPRO [3]. It was not 
published because we have found it rather inefficient. Even for a fairly large 
molecule (cyclohexane) it accelerated integral computation only by a factor of 1.6 
with a reasonable threshold on the overlap function (10- s). It is possible, however, 
that for larger systems the charge-conserving integral approximation will be of 
value. For smaller systems, there are not too many vanishingly small charge 
distributions, although many two-electron integrals are small because they contain 
the product of two overlap factors, neither very small in itself. It may be noted that a 
novel type of integral approximation which is also charge-conserving but much 
more efficient than the Wilhite-Euwema method [20] is being implemented in 
TEXAS. This method will be described separately. 

We have learned of the program HONDO, developed by King and coworkers [13] 
when the present project was well under way. Their method of integral evaluation, 
based on the ingenious use of the properties of orthogonal polynomials [21] seems 
very promising for higher angular momentum functions, as the computing work 
increases only linearly with the combined angular momentum of the basis functions 
in a two-electron integral. E.g. evaluation of an integral of the (dd [ dd) type takes 
perhaps two times as much computer time as that ofa  (pp ]p p) integral. In contrast, 
a (dd] dd) integral costs about 16 times as much time as a (pp ]pp) one in TEXAS, 
and the ratio is similar in other programs, too. However, to compare the two 
methods realistically, one should take into account that, with the usual basis set 
composition, only a small fraction of the integrals are of the (dd ] dd) type; most 
integrals contain only one d function and in this case the advantage of HONDO is 
much less. As a typical case, we may assume that about 20 ~ of the basis functions 
are of d type. In this case, 41 ~ of the two-electron integrals contain no d functions, 
41 ~o contain one d, 15.3~ two d's, and only 2.7~o three or four d's. Integral 
evaluation time per primitive integral is then only twice larger for the spd basis set 
than for an sp basis. However, for a basis set with a significant proportion of d 
functions, HONDO will doubtlessly outperform TEXAS. One disadvantage of the 
algorithm used in HONDO is that it is not possible to perform part of the integral 
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computation outside the loop over the innermost contraction. Although higher 
angular momentum functions are rarely contracted, this feature may be still 
important, as most of the two-electron integrals contain both high and low angular 
momentum functions. 

4. Symmetry and the Storage of Integrals 

There are two diametrically opposite philosophies with regard to symmetry. At one 
extreme, GAUSSIAN 70 [17] does not use symmetry, reasoning probably that 
large molecules are seldom symmetrical. This is true to a certain extent, particularly 
in the present context, i.e. for potential surface calculations. However, the systems 
often have some limited symmetry, e.g. a mirror plane. At the other extreme, there 
are programs which can use high point group symmetry in a sophisticated manner. 
Such programs make impressive calculations on large symmetrical molecules 
possible. Unfortunately, molecules in highly symmetrical nuclear conformations 
possess disappointingly few interesting properties. Moreover, most of the advan- 
tages of symmetry can be utilized by considering only a simple Abelian subgroup of 
the full molecular point group. To our knowledge, this approach was first followed 
in our program MOLPRO [3] and has been used since in several programs, 
including MOLECULE [22] and Ahlrichs' program [12]. It was retained in 
TEXAS where only point groups isomorphic to C2~ or C2 are allowed. Symmetry 
operations (inversion, mirror planes or twofold rotations) must be specified in the 
input. The transformation properties of the basis functions are, on the other hand, 
determined automatically from the overlap matrix between the original and the 
transformed basis set. 

In the course of integral and force calculation, an integral block is skipped unless all 
symmetry-related blocks precede it in the canonical integral order. As pointed out 
by Ahlrichs [12], most of the testing for symmetry equivalence can be done in the 
outer loops. Of course, further savings are possible for integrals which vanish by 
symmetry. The latter type is particularly important in planar molecules where all 
integrals which contain an odd number of antisymmetric (p~) functions vanish. To 
take advantage of this, S X Y Z  shells must be split to S X Y  and Z shells: if shells are 
defined in a way that they contain either symmetric or anti-symmetric functions but 
not both, then integral blocks over an odd number of antisymmetric shells may be 
omitted. 

A special feature of symmetry handling in TEXAS is that it will accept not only 
perfect but also broken symmetry, i.e. some basis functions may not conform to 
symmetry. This is useful in force constant calculations because often a single 
hydrogen atom alone deviates from symmetry. For this method to be useful, at least 
80 and preferably 90 per cent of the basis functions should conform to symmetry. 

5. SCF Procedure 

The SCF procedure in TEXAS has been taken over to a large extent from 
MOLPRO [3], the SCF package of which was written by W. Meyer. We discuss 
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some of its features because the MOLPRO description [3] did not appear in the 
open literature. 

Construction of the Fock matrix is facilitated by premultiplying the integrals by a 
permutation number 

(2 - alj)(2 - aKL)(2 -- 6,S, KL)" 
According to the shell structure of TEXAS, the permutation number is applied to 
blocks rather than to individual integrals. This feature simplifies the construction of 
the Fock matrix considerably. 

A novel feature which emerged from discussions with W. Meyer is the use of a 
double integral file. The first file contains integrals for which the (Sab x &d) factor 
exceeds a certain threshold, say 10-4, while the second contains integrals below this 
threshold. If  the SCF iteration has advanced far enough, the contribution of the 
integrals on the second file to the Fock matrix does not change significantly for 
successive iterations. This contribution is then evaluated only in every third 
iteration. The partial Fock matrix from the small integrals is simply added to the 
Fock matrix in the following two SCF steps. Some discretion is necessary to use this 
feature, as too high a threshold may cause the SCF procedure to diverge, while a 
too low value is inefficient. It was found to work best in molecules above a certain 
size, say, more than 5 non-hydrogen atoms. 

One peculiarity of gradient calculation is that  the forces are more sensitive to SCF 
convergence than the total energy, in accordance with their first-order dependence 
on the wave function. The worst cases are planar ~z-systems distorted from 
planarity. E.g. a calculation on slightly non-planar benzene was started with the 
wave function at the planar geometry. Total energy was stable to 10-v Eh from the 
8'th step on, while the two-electron energy had converged to 8 x 10-v Eh and the 
dipole moment to 6 x 10 -5 a.u. by step 10. The force obtained at this point was 
still in error for some components by as much as 2 x 10 -5 a .u .~  1.8 x 10 -4 md 
(l m d = 1 0 - 8  N;  1 Eh~4.349814aJ),  and the total torque of the forces was 
5 x 10 -4 md/~. Errors of this magnitude are, of course, not important for geometry 
optimization, neither for the calculation of quadratic force constants. However, 
they may influence the cubic and higher force constants significantly. In the above 
example, after ten more SCF iterations the two-electron energy has stabilized to 
1 O-8 Eh, and the total torque diminished to 1.6 x 10-6 md/~;  we estimate that the 
force components have converged to better than 10-6 md. 

In view of the sharp convergence necessary for the gradient, it is important to use a 
good SCF algorithm. Most methods suggested for improving SCF convergence aim 
only at eliminating divergence at the beginning of the iteration. Such methods help 
very little in the later stages of the SCF procedure. TEXAS currently uses a damping 
procedure which is carried out on the Fock matrix instead of the density matrix; 
errors arising from the non-idempotency of the interpolated density matrix are 
avoided this way. To our knowledge, this approach was first used in MOLPRO [3]. 
The default procedure is to interpolate the Fock matrix according to 

F" = (1 -p)F.  +pF._, (5) 
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with obvious notation. The parameter p is near 0.2 at the beginning of the iteration. 
Its value is increased if successive changes in the two-electron energy are of opposite 
sign (signifying that the SCF procedure oscillates) and diminished if the changes are 
of the same sign. Using starting vectors from minimum-basis calculations, 
satisfactory convergence was achieved in each c a s e  investigated so far. However, as 
mentioned above, very sharp SCF convergence is sometimes necessary in gradient 
calculations. Therefore, a simple convergence acceleration technique has been 
developed; it is described in the Appendix. 

Utilization of symmetry in the construction of the Fock matrix depends on the type 
of the symmetry. In a closed-shell calculation with perfect symmetry, a variation of 
the time-saving algorithm of Dacre [23] is used. Each block of integrals is 
multiplied by a symmetry factor which is the number of distinct blocks into which it 
is transformed under symmetry. Two blocks are not considered distinct if they differ 
only in the order of the indices. The Fock matrix is constructed using the unique 
blocks and is subsequently symmetrized according to 

Fly sym = Fij q-PRi x PRj x FRi,R j (6) 

where i and j are the indices of the basis functions Zi and Zj with transformation 
properties 

RZi = P m Z m  (7) 

The symmetrization operation (6) has to be performed for a full set of generating 
operators ~ of the group. More sophisticated versions of this algorithm, which are 
applicable to arbitrary point groups, have been described by Elder [24] and by 
Dupuis and King [25]. However, as discussion in Sect. 4, the restriction to simple 
Abelian point groups is rarely a real disadvantage. 

The Dacre method is very advantageous because the symmetrization is carried out 
on the Fock matrix and is therefore a trivial operation. It is not applicable, however; 
if symmetry is imperfect or if the density matrices lack the total point group 
symmetry, as it may be the case for unrestricted Hartree-Fock calculations. In these 
cases symmetry-related integrals must be generated from the unique integral list, 
and the savings extend only to the calculation, storage and reading of the integrals 
but not to the construction of the Fock matrix. 

Note that the Fock matrix itself is not factored into symmetry blocks. This is not a 
significant disadvantage from the computational viewpoint, as symmetry blocking 
influences only matrix diagonalization and other incidental operations. It makes it, 
however, more difficult to establish the identity of the orbitals in symmetrical 
molecules. A simple remedy for this is to transform the Fock matrix to symmetry- 
adapted basis after it has been constructed, avoiding thus the difficulties associated 
with the transformation of two-electron integrals. 

As it was shown earlier [26], both Roothaan's restricted open-shell method and the 
unrestricted Hartree-Fock method allow the evaluation of the gradient. MOLPRO 
did contain both versions beyond the usual closed-shell force routine. Only the 
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closed-shell package has been implemented in TEXAS so far. The general 
conditions on the wave function for analytic gradient evaluation are discussed in [2] 
and particularly in [27]. 

6. Program Organization 

Programming techniques are outside the scope of this paper but a few points 
concerning program organization deserve mentioning. For easy transferability, 

Table 3. Some representative computer  times a 

Molecule Symmetry Basis Computer  

Tforce 

Tint TSCF Tforce Tint 

Ethylene C~ 4-21 CDC6600 b 32 8.4 123 3.8 
Ethylene C2~ 4-21 CDC6600 b 24 8.3 96 4.0 
Ethylene C2, 6-31G* CDC6600 b 367 48 1467 3.7 
Butadiene no 4-21 CDC6600 b 290 111 1026 3.5 
Bntadiene C a 4-21 Harris ~ 481 186 2094 4.4 

N d 
/ 

C H 3 ~  no 4-21 Harris ~ 313 112 1236 3.9 
N 

C 
N d 

/ 

C H 3 ~  no 6-31G* Harris c 5400 537 28361 5.2 
N 

C 
C3HvNO * no 4-21 CDC6600 b 540 202 2010 3.7 
Benzene C2v 4-21 CDC6600 b 244 93 1227 5.0 
Benzene f C~ 4-21 CDC6600 b 432 167 1809 4.2 
Pyrrole f C, 4-21 CDC6600 b 277 91 1254 4.5 
O N F  C, 7s3p e Univac1110 65 22 218 3.4 
CF3NO C s 7s3p g Univacl  110 608 302 1515 2.5 
C H 3 N ~ N C H 3  (22 7s3p g U n i v a c l l l 0  462 197 1114 2.4 
BH3CO C~ 7s3p g Univac1110 129 39 449 3.5 

a In seconds. SCF times refer to a single iteration. Integral threshold is e 2 = 10-7. The 4-21 
basis is described in [10]. 

b TM time, as defined on the CDC6600 computer  of  the University of  Texas at Austin. This is 
somewhat  larger than the CPU time for the forces and integrals, and is about  the double of  
the CPU time for the SCF step. Only the R U N  compiler is available in Austin and this was 
used throughout .  If the more efficient F T N compiler is used, all CPU times are 
approximately halved. 

c Elapsed time on the Harris Slash 4 minicomputer.  
d The saddle point geometry on the methyl isocyanide rearrangement potential surface. 
e N-methyl acetamide. 
f Non-planar  geometry. 

g Integral evaluation is faster by a factor of about  1.5 with the 4-21 basis set than  with the 7s3p 
set, and the results are comparable. The 7s3p/3s basis was contracted to 4s2p/2s. The author  
is indebted to Dr.,E. Flood (Tromso) for the timing data. 
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TEXAS has been written fully in standard F O R T R A N  1. Data storage is fully 
dynamic: all real arrays are stored linearly in a single large area. Integer arrays are 
similarly stored. Particular emphasis was placed on the input. To facilitate data 
preparation, integers are read in as real variables. This makes possible to write each 
datum (keyword, integer or real number) left justified in fields of  uniformly 10 
characters wide. Administration of external storage goes through special sub- 
routines which keep an account of file contents, current pointer positions, etc. A 
detailed input manual has been prepared for use with TEXAS. Representative 
computer times are listed in Table 3. 
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volunteered to implement the localized orbital program from MOLPRO. This research has been 
supported in part by the U.S. National Science Foundation and the Hungarian Institute of Cultural 
Relations as part of the program of cooperative research of the University of Texas and the Hungarian 
Academy of Sciences. It has also been supported in part by a grant from the Robert A. Welch 
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Appendix: A Simple Convergence Acceleration Technique 

The essence of this method is to compare the Fock matrices of two consecutive SCF 
iterations in the intermediate representation, i.e. on the basis of  the orbitals used to 
construct the Fock matrix. SCF convergence means that the Fock matrix becomes 
diagonal in this representation. Assuming that the orbitals in step k correspond to 
those in step k -  1 (i.e. the overlap matrix between the two sets of orbitals is near the 
unit matrix; see below), an overshoot correction factor may be defined as 

/:k - 1 (Fk - 1 k - 1 (A 1) 
~ia = --ia ",--ia -- Fia) 

Here i and a denote occupied and virtual orbitals, respectively. In the special case of 
a single occupied and a single virtual orbital, the correction factor is approximately 

{, = ( F , , - F u ) ( F ~ a - F u - J i a + 2 K i , , )  - 1  ~ ( g a - e i ) ( e a - g i - J , , , + 2 K i , , )  (A2) 

where the e are the orbital energies and J, Kdenote the usual Coulomb and exchange 
integrals. This result is easily obtained by comparing the ordinary SCF procedure to 
a related, quadratically convergent but generally impractical technique : a complete 
configuration interaction in the space of  all singly substituted determinants, 
followed by rewriting the resulting wave function into single-determinant form to 

first order accuracy. 

The form of (A2) suggests that the correction factor is not strongly dependent on the 
orbitals. Assuming its constancy, multiplication of the Fock matrix element Fi, by 
{ia prior to matrix diagonalization leads to quasi-quadratical SCF convergence in 
the special case mentioned above. Unfortunately, this is not true generally, due to 
the neglect of certain coupling terms in the many-dimensional case. Still, the 

1 The subroutines for packing and unpacking integers are, however, best transcribed in machine code. 
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application of correction factors to the occupied-virtual block of the Fock matrix 
usually results in enhanced convergence. 

Practical experience shows that the present method should be used in the following 
way: 
1) The range of the correction factor should be limited: a range between 0.25 and 2 
was found adequate. 
2) Only those Fock matrix elements should be corrected which are larger, in 
absolute value, than a specified fraction, say one-tenth, of the largest element in the 
occupied-virtual block. 
3) The method should be used only after initial convergence has been reached. In 
potential surface calculations this condition is easily met by starting the SCF 
iteration from the wave function in a neighboring point. 

Correct ordering and maximum similarity of the orbitals can be established by 
subjecting both the occupied and the virtual orbitals of step k + 1 to unitary 
transformations U0 and Uv. These matrices are constructed according to 

go = A o ( A g  A o ) -  1/2 (A3) 

where the positive definite square root is to be taken, and Ao denotes the overlap 
matrix between the two sets of occupied orbitals" (Ao)ij=(q~+l Jq~). The 
transformation of the virtual orbitals is analogous. This transformation gives the 
maximum overlap sum between the orbitals in step k and those in step k + 1 [28]. 
The use of the orbital rotations (A3) is particularly important if there are degenerate 
orbitals. 

The above method can be considered as a generalization of the level-shifting method 
of  Saunders and Hillier [29]. Indeed, their method of increasing the diagonal Fock 
matrix elements of the virtual orbitals is equivalent, in the sense of perturbation 
theory, to a correction factor of 

~i, = (e, - ~i)(~, + 6a-- e l ) -  1 (A4) 

where 6, is the level shift. As (A4) shows, the level shifting method is less flexible 
than the correction factor method. Experience shows that the level shifting 
technique is useful to damp out oscillations in the initial stage of the SCF iteration 
but it frequently retards convergence in the later stages, at least with positive 6 
values. 

The above technique has been implemented in TEXAS. It was found that it 
accelerates SCF convergence in most cases, sometimes very significantly. Professor 
W. Meyer has informed me that he has been using the same method (except the 
orbital rotation part) since 1973 to converge open-shell (RHF) Har t ree-Fock wave 
functions. 
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